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ENERGY OF GRAVITATIONAL FIELD

POST-NEWTONIAN POLYTROPES
IN ALTERNATIVE GRAVITATIONAL THEORY

S.A. Oshepkov, A.A. Raikov

Relativistic corrections to the total energy of a compact object must be introduced in analisys of
its stability in alternative gravitational theory. In the case of polytrope type of the equation of state
in the form in the form of P = Kp't'/" all the Post-Newtonian corrections in GRT to gravitational
energy involve integrals such as Iqpcqa = fﬁ“""’b(ﬁ')cfd d¢ where n is the index of polytrope, a, b, ¢, d
are integers and ¥’ is the derivative of Emden’s function #(¢). In the present paper it is shown that all
the considered integrals of the Post-Newtonian corrections are expressed through one - here we choosed
l1202. The analytical relations between other integrals and [i1202 together with its tabled values are
presented which allow, to get Post-Newtonian corrections to the gravitational energy for a wide range
of alternative gravitational theories without complex calculations.
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1. Introduction

The problem of stability of relativistic compact objects with different masses (neu-
tron stars, supermassive objects in active galactical nucleus, etc.) has great importance
for astrophysical applications. Relativistic corrections to the total energy of a compact
object [1-4] must be taken into account in its analysis. In GRT it was done for poly-
tropic models by W.A. Fowler [2]. In present paper we suggest an analytical method for
determining stability in different gravitational theories.

All the Post-Newtonian corrections to gravitational energy involve integrals of the
form:

Iabcd = /ﬂan+b(19/)cgd df

where n is the polytrope index in the equation of state P = Kp't'/" a, b, ¢, d are
integers and ¥’ is the derivative of Emden’s function 9 In the present paper it is shown
that all the considered integrals of the Post-Newtonian corrections are expressed through
one [1595 (has been chosen). The analytical expressions of other integrals over ;505 and



42 POST-NEWTONIAN POLYTROPES [ GRAVITATION 1995

its table values are presented giving Post-Newtonian corrections to gravitational energy
of compact objects.

2. Classical polytropic energy

Analytical forms of polytropic models are discribed with the polytropic functions
fabcd — ,ﬂan+b(,§/)c€d (1)
and integrals over them
Iabcd = /fabcd df (1/)

Using Leun—Emden’s equation
2
V= —Eﬂ’ " (2)

we get
f(;bcd - (CLTL + b)fa,b—l,c+1,d ‘I’ (d - 2C)Ia,b,c,d—l - C*Ia-}-l,b,c—l,d- (3)

Integrating this equation we come to:
(LZTL + b)fa,b—l,c-}-l,d + (d - 2C)Ia,b,c,d—l - CIa+1,b,c—1,d = fabcd- (3/)

The linear relation Eq. 3’ has been derived at by partial integration and using Leun—
Emden’s equation Eq. 2. This provides a method of calculating the integrals I,;.4.

Eqgs. 3 and 3’ allow to get the analytical expression of energy radial dependence in
classical case. It is F. defined as a sum of the thermal W and gravitational energy U

T

m:W+U:/mm—/@Lm (4)

where ¢ = nP/p is the thermal energy per unit mass and m is the mass inside the sphere
of the radius r. With the standard dimensionless variables 9 and £ defined as

:Fn+UKﬁm4rﬂ

4G (5)

p:pcﬂnv TIQE,

we get
W =wl = w/ﬂn+152 dg,
n+1 n+1

wligis =

U=

w/WW@%

where w = 4ra®nP,, and P, is the central pressure.
Integrals I1199 and I1g13 as well as mass integral

n

Ligos = /ﬂnfz df = _19/52 = f0012 (7)
can be analytically derived { f.3.q}

Li100 = %_5 [(n + 1)5219’(&9/ + )+ 219714.153] _
1

- S [(m 4+ 1)(foozs + for12) + 2 1103, (8)

1 , , 1
L1 = =5 [ﬂanS + 36%9 (9" + 19)] = w_5 [3 foo2s + 3 fo112 + fiios) - (9)
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Applying standard integration methods this result can be heuristically received using
linear relations Eqs. 3 and 3'. Substituting consequently the integrals I;,05 and [1p;3 into
each of the three terms of Eq. 3’ we obtain six equations; three of them form non-
degenerate linear system for integrals I1102, 1013 and Iggss

10022—211013 = f00237

10022—11102 = f01127

(n+1) hois+3his = firos

Substituting Eqgs. 6, 8 and 9 into Eq. 4 we obtain classical relation between polytropic
energy and dimensionless radius &
_A4md®P, [1—-n

Eq(é) = — | D" 4+ (n+ 1)(3 — n)E (Y + ) (10)

The known equation for total polytrope’s energy (£ = &) is

(n+1)(3-n)

FE,=41a3P,
n—2>5

HCOE (11)

3. Post—Newtonian energy of a polytrope

Polytropic models of stars can be presented as one-parameter sequence of equilibrium
states with the same equation of state and different central densities p.. The dependence
of the total energy F(M,p.) on mass M and central density p. is important for studing
of stability in Post-Newtonian range. Putting F first derivative with respect to p, to
zero gives the relation between M and p. for stationary configuration and the sign of
the second derivative E by p, indicates the stability of this state [3, 4].

The Post-Newtonian energy of a politrope can be defined as

E = Eq+ AW + AU (12)

where AW is the relativistic correction to the thermal energy caused by the deviation
from polytropic equation of state and AU is the relativistic correction to Newtonian
gravitational energy. The correction AW to thermal energy can be obtained [4] without
using integral of the I,;.4 type. At the same time, relativistic correction AU to gravi-
tational energy of the Post-Newtonian polytrope depends on the choice of gravitational
theory and is expressed through integral of the I,;.4 type, as we show below in the case
of GRT.

In GRT the Post-Newtonian correction to the gravitational energy is [3]

AUgr = Iy + Ioy + Isy + 4y + Is) (13)
where
G T omd
L o= —— [ (14)
C T
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G2M Tmdm\ dm
L= 2 (/ ’ )T (17)

0 0

G? T mdm
I, = - (/mrdr) prat (18)
o \0

Note, that these integrals belong to the I,;.4-type. Eqs. 15 and 16 transform with
dimensionless variables as

n
Iny = n—_l_luh]lnsa (19)
1
Ipy = —§W1I1024 (20)
where
67 (47)2/3

ZW7/3p2/3 (21)

T e e

and 9] = ¥'(&;). Going to the standard dimensionless variables of Eq. 5in Eqs. 16 and 17
the thermal and gravitational energy equations can be written as function of the radius
£ in Eqgs. 6, 8 and 9

n

2
. 2 ) (22)

1
Iy = —w (n 5 Tig94 + 311004 + 311113)- (23)

I3 w1 <I1024+I1113-|-

n

Eq. 18 leads to Eq. 14 integrating by parts (Gm dm/r* = 47 dP) then

1 1

) = n—_l_lwlllllg. (24)

Thus the definition of the Post Newtonian correction AUgg leads to the evaluation
of the three integrals 1113, I1924, I3104 Of the I,;.4-type. A variety of integrating methods
gives the expression for AUggr with two integrals [3-6]. These integrals are I(1)(/1113)
and I(5)(11024) in [3, 4] or I1303 and I5104 in [5]. The method described above and based
on Eqgs. 3 and 3’ makes it possible to get all linear relations of the [ ;.4 type integrals
and express AU as an integral. Eqs. 3 and 3’ together with integrals Iygss, [1202 and Igy99
lead to five linear equations of the Eq. 3'-type with the right-hand sides are fi114, foo34,
f1203, for2s and fga12. Although it is impossible to obtain analytical form of the required
integrals they { fascq}-type can be written through the integral (f. e. I1202)

UREES %—I-Q e — - j_ 5 Tiz02, (25)

Thoss = —§ D(0)2E° — ﬁ grERes _ %19219’52 - % (9')%€* — ;Z%J:(Q)) Lsgs, (26)
Lo = 72;(17;25)) PrHIe _ gntigie L"; D) I )€ —

—"T“ PE? — "T“ ()% - (n=8)n—-1) ;(i)i"Q; D Lo (27)

Then the required integrals Eqs. 14-18 can be expressed with only I;59

3n
I = — I 2
(1) (n—}— 1)(n—l-2) wWidy202, ( 8)
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Iy = %wl <(ﬂ’)3€4—%hzoz), (29)
Iy = w <5_n(19’)£ %Lm), (30)
Iy = @ <—%( e+ (;;2)11202), (31)
Is) = S —— (31)

(0t D(n+2)

Substituting Eqs. 28-32 to Eq. 13 and getting 9(&;) = 0 on the polytrope’s surface
the relativistic correction AUgg to the gravitational energy in GRT is given by

GZ
AUgr = — karM™?p*® (33)
C

where
(47)*3 [n+5

Ko = ~gigrers g g oo+ =g (1€ (3)

The following table containss numerical values of the I505 for various indexes n.

Table 1.

n & [om+2etae | (976 | —9'e
0 V6 161/6/35 86 2v/6
0.5 | 2.7527 1.03804 71772 | 3.7888
1 T 0.97026 T T
1.5 | 3.6538 0.91329 1.49755 | 2.7141
2 | 4.3529 0.86492 0.73972 | 2.41105
2.5 | 5.3553 0.82358 0.36484 | 2.18721
2.9 | 6.5264 0.79478 0.20179 | 2.04840
3.0 | 6.8969 0.78812 0.1728 | 2.01824
3.1 | 7.3085 0.78166 0.14747 | 1.98970
3.5 | 9.5358 0.75773 0.074308 | 1.89056
4 | 14.9716 0.73184 0.025899 | 1.79723
4.9 | 171.414 0.69592 0.000175 | 1.7355

For n = 1 and n = 5 the integral I;595 is analytically derived

K

.3
Ioy = /S”; % dx i(:ssl( ) — Si(37)) = 0.97025, (35)

0

Eq. 34 with the polytropic index n = 3 gives the known value kgr = —0.9183 its negative
sign leads to instability of supermassive stars in GRT.

4. Conclusion

The explicit polytropic equations for integrals providing relativistic corrections to
the Newtonian energy AUgg by I1592 are

31

&1
3
’19”+1 ,19/ Sd — s ’19”+2 Zd
[rvneds = - [,
0 0
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7 Ve = 7 g de,

0

& 3]
Jorreae = g [t
- | 0 (n41)(n—38) |
0/ PEPEdE = g (e / e de,

Differentiating the functions of fu5.q = 9"+ (9)°¢-type with respect to ¢ defines a
politropic model. For example, the radial Eq. 10 dependence of the classical polytropic
energy is given this way. Eqs. 3 and 3’ could be of particular assistance in defining the
Post-Newtonian corrections to the gravitational energy in various relativistic gravita-
tional theories. In GRT this correction A Fgp is expressed by one integral of I,;.4 type
Eq. 28 whereas it is generally believed that the required number of integrals should be
at least two [2-6].
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