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1. Introduction

Poincare H. [9], Thirring W.E. [11] and Birkhoff G.D. [10] formed an approach to the
theory of gravitation. The field theory of gravitation (Gravidynamics) was developed by
Baryshev Yu.V. and Sokolov V.V. [1-8]. In GD the gravitational field is described as
a tensor field of the second range ¥ in the flat space-time of Minkowski. The gauge
invariance of the field equations requires the Lagrangian L, of the gravitational field
connected with sources as follows

1
L(g) = —m[ﬁ1+ﬁz+ﬁs+£4] (1.1)

where
Ly =29, """, Lo= W, 07" (1.2)
Ly=—20_™¥" L, =0,0" (1.3)

The interaction Lagrangian L, is determined by the principle of the gravitational
interaction universality and is postulated as

1 i
where T{é) is the total Energy Momentum Tensor (EMT) of any material system. The
gauge invariance T(ié);k = 0 follows from the law of conservation of energy-impulse L.
Consequently, in Guilbert—Lorentz’ gauge the equations of field

ik L yi
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take a form . S
i T i
St = T(é) (1.6)

o(wik —
( 2

where 7 is the metric tensor in pseudo-Euclid space-time of Minkowski. It should be
remarked that Guilbert—Lorentz’ gauge provides respectively the law of conservation of
the energy-impulse of source [8] through the equation of field (Eq. 16).

The all three classical gravitational experiments [1, 2, 5, 6, 8] are naturally depicted
by data of the field equation (1.6) with the corresponding equations of movement. As
this takes place, according to Gupta [12] and Thirring [11], the full EMT T(Zé) includes
gravitational field and the field equations (1.6) can be solved by iterations.

2. Laws of Conservation
Laws of conservation, classical EMT, Guilbert’s EMT and tensor of spin for the

tensor field of the second range ¥;; can be obtained by the standard rules of Lagrangian
formalism. The equation of the field Lagrangian may be written in general form as

1 . . .
= [ 49 Ligis, 00t 6™, 0ng™ Vi, 0,97, (2.1)
Q

Let us consider an infinitely small change in the coordinates
't = 2b 4 62" (2.2)

where §z* is the infinitesimal 4-vector. Under change in the coordinates we get

- %/dﬂ’ £y - %/d QL(z) = 0 (2.3)

by invariance of action, as a scalar and so Jacobian .J of the transformation (2.2) is
J =1+ 0pé2", (2.4)

then we get

/dQ [6:L(2) + 04 (62*L(2)] (2.5)

where 6, L(z) = L'(z) — L(z) is Lie’s variation. Respectively, it is equal to

oL oL oL oc

oL(z) = D0t orgir + Do OLYikn + g 69" + Y 6Lg s
+8(?Iﬁk S U 4 agﬁk S (2.6)
and so 8;¢™ = —g"'¢*™ 6. ¢;, then
/dQ [w 7ot (ifk g“gkmééfﬁm) orgix + 0Tt ] 2.7
where
J" = Léx" + (?an Srgin + 8(% 6rg™ + M‘?i A A (2.8)
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and 6£/6X = 0L/0X — 0,(0L/0X ,,) is Euler variation derivative. The density of La-
grangian L is the scalar density of weight +1, then vector J" is the 4-vector of weight
+1 as well. Then 9,J™ = D, J". We get by the law of transformation of tensors

orgir = —gu@k&CI - gklaiéxl - 5$Ialgik = —g“Dkéml - gkzDi(SfUl (2-9)
and
6L\IJik = —\Ilﬂﬁk(?ml — lIJk,@-(ﬁ.rl — 633’(91\Ilik = —\IJ“D]C(S;fI — \IJMDZ'(S;?I — 6$1D1\Ilik. (210)

Substituting (2.9) and (2.10) to (2.7), determining EMT of Guilbert as

TH = -2 ( oL _ g“g’“’”—M ) (2.11)

0gi bg'm

and using integration by the parts we get

1 l k oL ik 6L mk
85 = E/dQ [_595 (DkT, + g Dt 42D, (kap ))+
Q

+D, <J” + T7éa' + 25?1;616 tlﬂ'”éxk)]. (2.12)

Expanding Lie’s variation in Eq. 2.8 for vector J” according to Egs. 2.9 and 2.10 and
combining their terms at éz' and D,éz', we have

oL

J" + QN—M\IJ”%M’“ = —7170z' — 0" D62 (2.13)
where ic i

is the ordinary EMT and

6L 8L . oL .
nk _ - LU —_ ik 2.1
7 (quk,ng“ ag® Y ovt ) (2:15)

e

is the tensor of spin. Expanding the covariant divergence in Eq. 2.12 we finally get

Q
+D, 6z [—T," + 1" — Dkof"] — U,"anDkéacl] =0. (2.16)

at unrestricted 62’ and the desired strong laws of conservation are

n 6’C ik 6’C mk
Dat + g DV + 2D, (Mﬂkw ) =0, (2.17)
TP — 17" — Dyot™ = 0. (2.18)

The equations of field §£/§¥* = 0 lead to the weak laws of the conservation of energy
and impulse

Dol = DT = 0, (2.19)
" — 1" = Dyotn. (2.20)
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It should be noted that these weak laws will be fulfilled in both cases: 1) at the free field
L = Ly or 2) at the dependent field £ = Ly + L) but off a body when 7* and 17
are the pure gravitational EMT of field.

3. Energy of Field

Canonical FMT of Field.
The Lagrangian £, gives the canonical EMT of field by Eq. 2.14 that has a form [1]

, 1 , . 1, 1. 1,
ik im;i k ik Im;n ik ik R
= —— (U, F — —p W, U — W -, 3.1
T(g) 87TG < Im 277 im; 9 ‘I’ 477 i1 ) ( )
It is a characteristic feature of Gravidynamics that this canonical EMT is a symmetrical
one.

At a first approximation, the field of Eq. 1.6 leads to the gravitational field of the
static spherical symmetrical case when 7%, = T¢% ) = mc?é(r) received from Eq. 1.6

pik — @(N)éik (3.2)

where ¢y = —GM/R is Newton’s potential. This potential was pioneered by
G. Birkhoff [10]. Birkhoff’s potential gives the corresponding energy of gravitational
field [1]

00 1

It should be noted that the gain energy is not only of positive and its dependence of po-
tential is an analogue to the corresponding one for vector field in Electrodynamics but it
can be experimentally tested within Gravidynamics for the energy of gravitational field,
being the source of the right-hand part of the field equation, to a second approximation
of the theory, gives the deficit 7" in a century for perigelius shift of Mercury, that is,
about 16 % of the whole effect.

EMT of Guilbert.

Energy Momentum Tensor of Guilbert (2.11) for £ = \/—gL,) where L, is defined
according to Eq. 1.1 and at Guilbert—Lorentz’ gauge in the pseydo-Fuclidian coordinates
of Minkowski’s space-time has a form as

TH = - 161@ [U1gr — %nf’q\p,nqﬁ" Py, U = 20 P 2D Oty

F2U P W — L 2UYPT — APDE PO APDL PIT QDY AYT PP (3.4)

For Birkhoff’s potential (3.2), that is, for the static spherical-symmetrical case off
body we get the energy density as

00 1
= tgq (Vem)’ (3.5)

that agrees to calculation of 7°° (3.3). By Eq. 2.20 this defines the divergence of spin
tensor of o¥°-component as zero as well as in Electrodynamics.

4. Conclusion

In GD the energy density of gravitational field ¢ of the static spherical symmetry
case determined by the standard and Guilbert EMT is

e=+

o (V)" (4.1)
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The pseudo-tensor of the energy-impulse of GR defined by Landau gives

00 7 Z
(GR) = T eIy (VSD(N))? (4.2)

for the energy density of the said case. According to Thirring W.E. [11], Cavalleri G.
and Spinelli G. [13] the convergence of field approach to GR with the field Lagrangian
that is different from £, (1.1) by the divergence addition, that is,

Ly =2v, e (4.3)

is under consideration at the place of £, (1.2) where £}, is the fifth and the last invariant
composed of the first derivatives of field potentials. Calculation for this field Lagrangian

Eg) = —ﬁ L)+ Lo+ L3+ L4] actually gives

100

7 )
= —%(V“P(N)) : (4.4)

Then the divergent correction to the field Lagrangian changes Guilbert’s EMT.

The differences between GD and GR at the first order of the theory of the field energy
density as well as different views on the existence of the scalar gravitational fields [3] and
the stability of supermassive stars [8] allow to state that the field theory of gravitation
(Gravidynamics) based on the field Lagrangian L, (1.1) leads to a different, other than
GR, nonlinear relativistic theory of gravitational field.

The author would like to express his gratitude to Yu.V. Baryshev and S.N. Sokolov
for their discussion of the present paper.
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